$19.99
I want this!

iOS 26 - Apple Intelligence Foundation Models Framework – Developer Reference Pack

$19.99

Apple Intelligence Foundation Models Framework – Developer Reference Pack

The definitive dataset and developer reference for Apple’s new Foundation Models framework in iOS 26


Overview

The Developer Reference Pack combines LLM fine-tuning dataproduction-tested Swift implementation, and verified Apple Foundation Models specifications into one cohesive kit.
It is purpose-built to train, fine-tune, or augment AI systems with accurate, on-device Apple AI framework knowledge— while providing developers with working Swift examples for real-world use.

All content was derived from hands-on implementation using Xcode 26 and the Foundation Models framework, ensuring authenticity and technical depth.


What’s Included

1. Fine-Tuning Dataset

File: FoundationModels_FinetuningDataset.jsonl

  • 74 prompt–completion pairs for fine-tuning or retrieval augmentation
  • Designed to teach models Swift-based reasoning around Apple’s new LanguageModelSessionTool protocol, and @Generable macros
  • Example topics:
    • SystemLanguageModel availability
    • Constrained decoding and schema validation
    • Background inference using BGProcessingTask
    • Adapter training and ToolOutput design

2. Manifest Index

File: FoundationModels_FinetuningManifest.json

  • Complete metadata map for dataset traceability
  • Includes topic summaries, source file names, and complexity tier
  • Ideal for staged fine-tuning, auditing, or curriculum creation

3. Technical Source Files (8 Markdown Specifications)

Covering the full Foundation Models API surface:

  • FoundationModels-CoreFramework.md -- LanguageModelSession, system availability, response handling
  • FoundationModels-AdvancedImplementation.md -- @Generable@Guide, constrained decoding, Tool protocol
  • FoundationModels-StrategicFeatures.md -- Adapter training toolkit, ToolOutput patterns, Apple’s AI roadmap
  • FoundationModels-PerformanceProfiling.md -- Foundation Models Instruments, TTFT, TPS, profiling templates
  • FoundationModels-LanguageModelFeedback.md -- LanguageModelFeedbackAttachment, submission workflows
  • FoundationModels-PromptEngineering.md -- Instructions vs Prompts, #Playground directive, prompt safety
  • FoundationModels-DynamicSchemas.md -- DynamicGenerationSchema, runtime composition, validation
  • FoundationModels-BackgroundProcessing.md -- Background task generation, BGProcessingTask, CPU-only mode

4. Production Swift Example

File: FoundationModelsFrameworkGenericRecipeGenerator.swift

  • Complete working Swift file demonstrating GenericAIGeneratorService
  • Integrates @Generable schema creation, structured generation, and SwiftUI binding
  • Production-quality implementation for iOS 26 projects

5. Documentation & Assets

  • FoundationModelsDataset_README.md – Setup, usage, and licensing instructions
  • Product image and thumbnail – Ready for Gumroad, Shopify, or documentation sites

Why It Matters

Current AI models have zero knowledge of iOS 26 Foundation Models — all public LLMs were trained before Apple introduced this framework.
This dataset bridges that gap, equipping your AI tools with:

  • Knowledge of Apple’s on-device LLM architecture
  • Working Swift examples for FoundationModelsLanguageModelSession, and DynamicGenerationSchema
  • Understanding of @Generable / @Guide macros and Tool integration
  • Support for adapter trainingstructured generation, and background inference

Perfect For

  • AI companies building iOS-native development assistants
  • Product teams training internal copilots with Apple framework knowledge
  • iOS developers exploring on-device LLM integration
  • Educators and consultants teaching Apple’s AI frameworks

What Your AI Will Learn

  • Generate correct Swift code for Apple Foundation Models
  • Implement Tool protocol for extending model functionality
  • Build dynamic schemas for guided generation
  • Optimize on-device inference performance
  • Manage LanguageModelFeedbackAttachment for ethical fine-tuning
  • Schedule background CPU-only tasks for model execution

Formatted for immediate ingestion. No preprocessing required.
© 2025 Riley Gerszewski. All rights reserved.

I want this!

Apple Foundation Models Framework LLM training data Formatted for immediate ingestion. No preprocessing required.

Feature Implementation Format
JSONL, JSON, Markdown, Swift
Tokenized for
LLM Training Ingestion
Use Cases
Model Training, Dev Support
Compatibility
OpenAI, Anthropic, local fine-tuning pipelines
Token Size
≈ 18,000 tokens of verified documentation
Size
1.66 MB
Powered by